N89 - 13646

54-27 181372 108.

THE EFFECT OF OXIDATION ON THE HIGH HEAT FLUX BEHAVIOR OF A THERMAL BARRIER COATING

Robert A. Miller NASA Lewis Research Center Cleveland, Ohio 44135

The effect of oxidation on the high heat flux behavior of a thermal barrier coating has been evaluated by cyclically exposing preoxidized specimens to a 3000° C nitrogen plasma. The thermal barrier coatings consisted of a 0.025 cm layer of air-plasma-sprayed $2r0_2-7\%Y_20_3$ and a 0.012 cm layer of low pressure-plasma-sprayed NiCoCrAlY applied over 0.13 cm diameter Bl900+Hf cylindrical substrates. A gradient of 800° C is produced across the ceramic layer in each 0.5 second exposure. This is much more severe than the gradient encountered on a gas turbine engine. Prior to exposure, the specimens were preoxidized at 1200° C for times from 0 to 20 hours.

These coatings were found to be tolerant to the high heat flux plasma flame for all but the most severe preoxidations. However, life degraded rapidly for preoxidation times in excess of 15 hours at 1200°C. A log-log plot of cyclesto-failure vs. estimated oxidative weight gain yield a straight or nearly straight line, and this line could be rationalized using an oxidation-based model that had been developed previously for low heat flux applications.

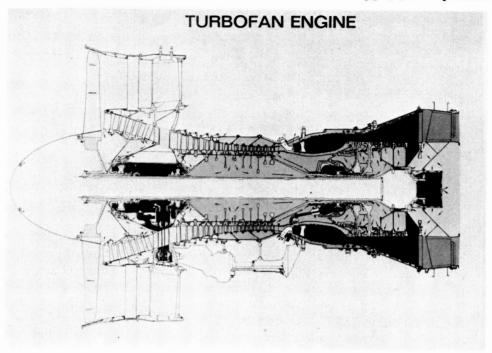


Figure 1.

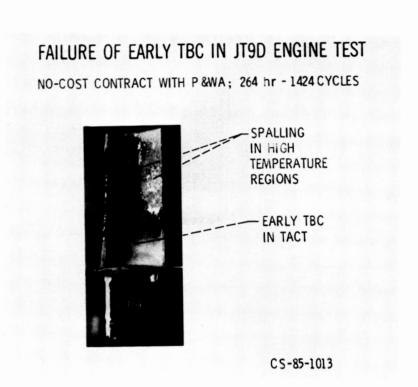


Figure 2.

ORIGINAL PAGE IS OF POOR QUALITY

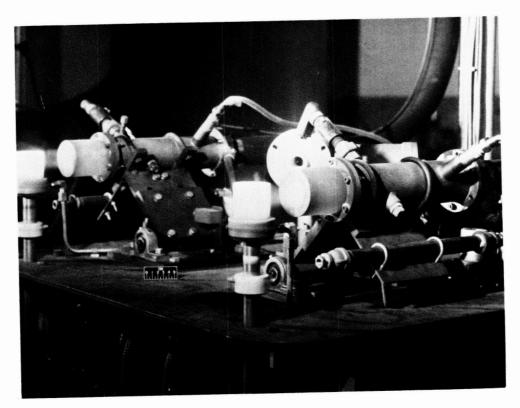


Figure 3.

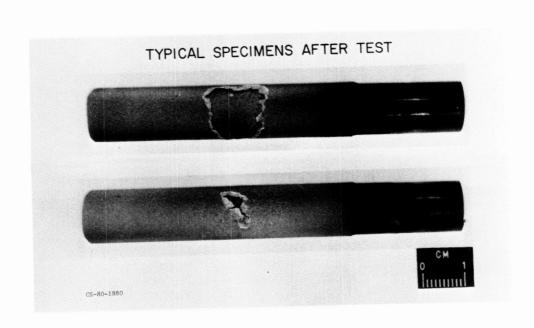


Figure 4.

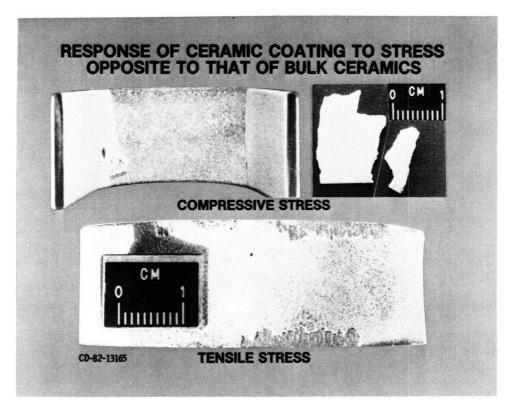
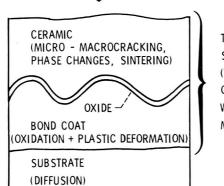



Figure 5.

SOURCES OF STRAIN IN A THERMAL BARRIER COATING

, Q, HEATING STRAIN ∝ TEMPERATURE GRADIENT

SOUNCE THE SECOND SECTION SECT

THERMAL EXPANSION MISMATCH
STRAIN ∝ TEMPERATURE RANGE
(TEST TEMPERATURE MINUS ROOM TEMPERATURE)
OXIDATION GROWTH STRESSES AT
WAVY INTERFACE PLUS POSSIBLE
MECHANICAL PROPERTIES CHANGES

Figure 6.

TBC'S FAIL IN OXIDIZING ENVIRONMENT

ZrO2 - Y2O3/NiCrAIZr; TUBE FURNACE; 20 hr CYCLES AT 1250 °C

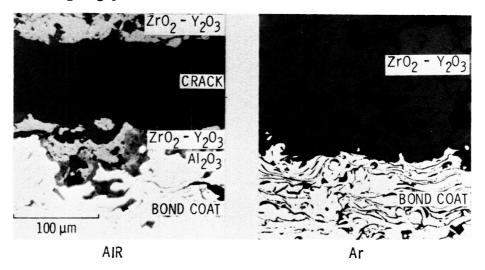


Figure 7.

PLASMA TORCH RIG (SCHEMATIC)

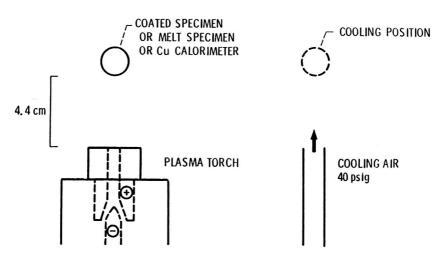


Figure 8.

CALCULATED HEATING RATES

0.038 cm ${\rm ZrO_2}$ - ${\rm Y_2O_3}$ CERAMIC COATING IN PLASMA TORCH AND MACH 0.3 BURNER RIG 0.018 cm ${\rm ZrO_2}$ - ${\rm Y_2O_3}$ CERAMIC COATING IN RESEARCH GAS TURBINE ENGINE

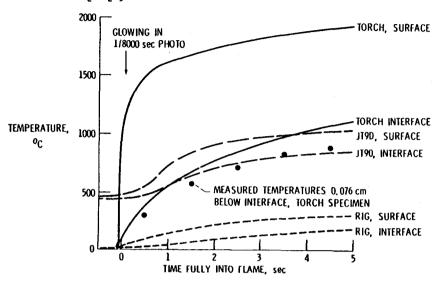
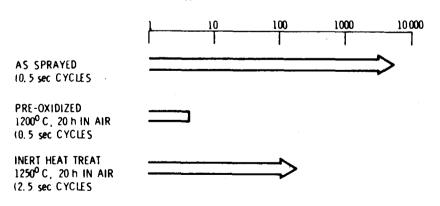



Figure 9.

RESPONSE OF ZrO_2 - 8% Y_2O_3 to high heating rates

PLASMA TORCH RIG 30 kW NITROGEN PLASMA 3000° C FLAME ΔT OF 1100° C IN 0.5 sec

CS-84-4175

Figure 10.

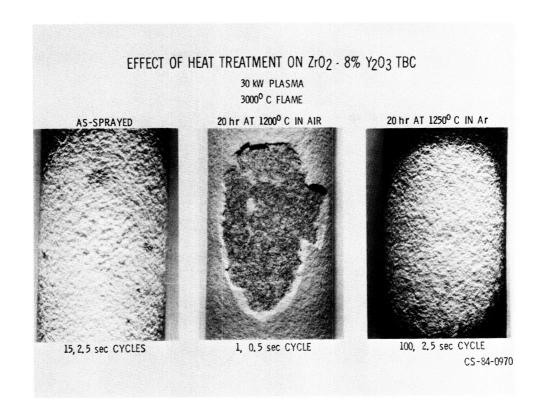


Figure 11.

THE STORY SO FAR -

- AS SPRAYED 0.04 cm $\rm ZrO_2$ 8% $\rm Y_2O_3$ TBCs TOLERATE LOCALIZED HIGH HEAT FLUX GREATER THAN EXPECTED IN GAS TURBINE ENGINE
- HIGH HEAT FLUX LIFE MAY BE SEVERLY DEGRADED BY PREOXIDATION
- INERT HEAT TREATMENT NOT HARMFUL (AND APPARENTLY BENEFICIAL, SEE THIN SOLID FILMS II9, I95 (1984).

THE NEXT STEP

- QUANTITATIVELY RELATE TBC OXIDATION TO HIGH HEAT FLUX LIFE.

Figure 12.

EXPERIMENTAL

SPECIMEN CONFIGURATION

CERAMIC LAYER

ZrO2 - 7% Y2O3

0, 025 CM THICK

ATMOSPHERIC PRESSURE PLASMA SPRAYED

BOND COAT

Ni - 22% Co - 18% Cr - 12% AI - 0, 4%Y 0. 012 cm THICK

LOW PRESSURE PLASMA SPRAYED

SUBSTRATE B1900 + Hf

1.3 cm CLYINDERS

HEAT TREATMENT

4 hr AT 1080 °C IN H2

PREOXIDATION

0 to 20 hr AT 1200 $^{\rm O}{\rm C}$ IN AIR

TEST RIG

30 kW N_2 PLASMA TORCH 3000 $^{\mathrm{O}}\mathrm{C}$ FLAME

0.5 sec Cycles 800 °C gradient (Calculated) in 0.5 sec 1300 °C Surface temperature (Calculated) in 0.5 sec

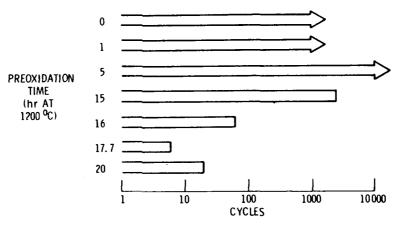

CS-85-1075

Figure 13.

EFFECT OF PREOXIDATION ON HIGH HEAT FLUX LIFE

0.025 cm ZrO2 - 7% Y2O3/NiCoCrAIY TBC 30 kW NITROGEN PLASMA 3000 °C FLAME

800 °C GRADIENT ACROSS CERAMIC IN 0.5S

CS-85-1080

Figure 14.

EFFECT OF PREOXIDATION ON HIGH HEAT FLUX LIFE

0.025 cm ZrO2 - 7% Y2O3/NiCoCrAIY 30 kW PLASMA 3000 °C FLAME 0.5 sec CYCLES

5 hr AT 1200 °C 15 hr AT 1200 °C 20 hr AT 1200 °C AFTER 5000 OF 2350 CYCLES 20 CYCLES 10000 CYCLES

Figure 15.

TBC LIFE MODEL DEVELOPED FOR LOW HEAT FLUX J. CERAM SOC. 67,517 (1984)

ASSUMPTIONS

- TIME DEPENDENCE OXIDATION, W
 CYCLE DEPENDENCE SLOW CRACK GROWTH DUE TO CYCLIC STRAIN
- OXIDIZED SPECIMEN BEHAVES AS IF CYCLIC STRAIN INCREASES

WORKING EXPRESSION

$$\sum_{N=1}^{N_f} \left[(1-\epsilon_f/\epsilon_f) \ (w_N/w_c)^m + \epsilon_f/\epsilon_f \ \right]^{b} = 1$$

$$\epsilon_f/\epsilon_f - \text{RATIO OF THERMAL EXPANSION MISMATCH STRAIN TO FAILURE STRAIN }$$

$$w_N/w_c - \text{RATIO OF WEIGHT GAIN AFTER CYCLE N TO CRITICAL WEIGHT GAIN }$$

$$for one cycle failure$$

$$m - \text{EXPONENT EQUAL TO UNITY IF STRAIN INCREASES IN A LINEAR }$$

MANNER WITH WEIGHT GAIN SUBCRITICAL CRACK GROWTH EXPONENT b -

Nf -CYCLES TO FAILURE

FORM OF EXPRESSION FOR PREOXIDATION

$$N_f = [(1 - \epsilon_r / \epsilon_f) (w_N / w_c)^m + \epsilon_r / \epsilon_f]^{-b}$$

CS-85-1076

Figure 16.

FIT OF HIGH HEAT FLUX DATA USING OXIDATION MODEL

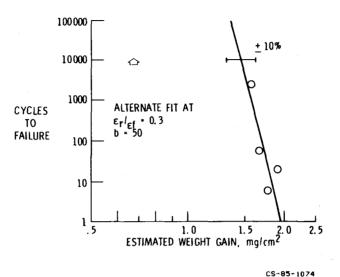


Figure 17.

CONCLUSIONS

- MODERATELY OXIDIZED 0.025 cm ZrO2 7%Y2O3 TBCs TOLERATE HIGH HEAT FLUX
- TBC LIFE A VERY STRONG FUNCTION OF AMOUNT OF PREOXIDATION
- MGDEL DEVELOPED FOR LOW HEAT FLUX MAY BE ADEQUATE FOR HIGH HEAT FLUX

FUTURE NEEDS

- WEIGHT GAIN MEASUREMENTS
- ADDITIONAL POINTS BETWEEN 10 AND 15 HOUR PREOXIDATION
- COMPLEMENTARY PREOXIDATION / INERT FURNACE EXPERIMENTS

Figure 18.